XXV Conferencia Latinoamericana de Informdtica Asuncion-Paraguay

Schema Versioning and The Generalised Temporal Database System

Viviane Pereira Moreira
Nina Edelweiss

Universidade Federal do Rio Grande do Sul
Curso de Pés-graduacdo em Ciéncia da Computag@o
Av. Bento Gongalves, 9500 — Bloco IV — Agronomia — Caixa Postal 15.064
CEP: 91501-970 — Porto Alegre — RS — Brasil
Fax: +55(51)336.5576
e-mail: [viviane, nina] @inf.ufrgs.br

Abstract

Raw data and database structures are evolving entities that require adequate support-
for past, present and even future versions. Temporal databases supporting schema versioning were
developed with the aim of satisfying this requirement. Schema versioning allows the viewing of all
extensional data, both retrospectively and prospectively, through user definable versions.

This paper considers a generalised temporal database system that keeps both the
evolution of data and the evolution of the conceptual schema through the integration of temporal
databases concepts and schema versioning mechanisms. The support for schema versioning raises
two complex subjects: the storage of the several schema versions and their associate data, and the
processing of queries involving more than one schema version. The main goal of this paper is to
analyse the second aspect in order to propose a strategy to answer multi-schema queries.

Keywords: temporal databases, schema evolution, schema versioning

1 INTRODUCTION
Database systems are used to store information from the real world. Traditional
 datgbase systems keep only the current state of data — every time an update is performed the past
state is lost. The finding that data evolve with time led to the creation of temporal database systems.
Temporal databases keep the evolution of data by using timestamps associated to him. In
[Tansel93] four categories of temporal databases are identified:

e Snapshot Databases: these are the conventional database systems, which do not include any
mechanism to deal with temporal information in an implicit way. In these databases every time
an update is made, the past state is lost and, only the last value recorded is available for queries.

e Transaction Time Databases: these databases, also called rollback, uses the transaction time of
data as-timestamp. The transaction time of a fact is the time when the fact is current in the
database. This timestamp is provided by the database management system.

e Valid Time Databases: these databases use the valid time of data as timestamp. The valid time
of a fact is the time when the fact is true in the modelled reality. The user must inform this
timestamp. :

® Bitémporal Databases: these databases use both transaction and valid time as timestamps.

In [DeCastro95] another kind of temporal database is identified: the multitemporal. In a
multitemporal database, relations of different temporal formats coexist.

111

XXV Conferencia Latinoamericana de Informdtica - Asuncién-Paraguay

In all temporal databases presented above, schema versioning was investigated only
through the extension, allowing the evolution of data but keeping this data associated to a static
schema. However, due to several reasons, the database structure may also change, fact that led to
the development of schema evolutlon/verswmng mechanisms.

There are three levels of support for schema changes in databases: modification,
evolution and versioning. These terms are often confused. In [Roddick94] there are some
definitions on which most recent research is based. These definitions were included in a glossary of
temporal databases concepts [Jensen94, 98].

e Schema Modification: happens if the database system allows the modification of the schema
definition of a populated database.

e Schema Evolution: happens if the database system allows the modification on the schema
definition without loss of existing information.

e Schema Versioning: happens is the database system allows the querying of all data, both
retrospectively and prospectively, through user definable versions.

The incorporation of schema evolution/versioning concepts in temporal database
systems came as a logical extension of the work previously done on extensional data. The first
model to support the temporal dimension at intensional level was the Grammatical Database Model
[Laine79]. Years later, Martin [Martin87] approaches the problems caused by the maintenance of
various schema versions; Clifford [Clifford87] proposes the HRDM (historical relational data
model); McKenzie [McKenzie90] discusses an extension to relational algebra to support the
temporal dimension and schema evolution; Ariav [Ariav91] deals with some aspects related to
schema evolution, presenting TODM - Temporally Oriented Data Model, Angelakis [Angelkis94]
incorporates schema versioning to ERT - Entity Relationship Time [Theodoulidis91];. equally,
Goralwalla [Goralwalla97] includes schema versioning to TIGUKAT [Peters94]. Among the most
important work done on this field there are Roddick’s research [Roddick, 92, 94, 95], De Castro and
Scala’s investigations [DeCastro95, 97, Scala93] and Edelweiss’ proposal [Edelweiss95].

This paper considers the generalised temporal database system [Edelweiss95], in which
both data and schema evolution are kept. In an environment with these features there are two
complex subjects: the storage of the several schema versions and their associate data and the
processing of queries which deal with more than one schema version (multi-schema queries) -

The remainder of this paper is organised as follows. Section 2 infroduces the generalised
temporal database system. The main concepts of schema verswnmg in temporal databases are
presented in Section 3. Section 4 shows how queries are processed and presents the strategy of
answering multi-schema queries. Some conclusions and final considerations are resembled in

Section 5.

2 GENERALISED TEMPORAL DATABASE SYSTEM

Non-temporal database systems have a static schema.and a corresponding static
database extension. Changes in the intensional or extensional data leave no track and it is
impossible to query old data or old schema definitions. Conventional temporal database systems
have a static schema and a corresponding temporal extension. The Generalised Temporal Database
System [Edelweiss95] is a system whose members are temporal database systems, which have a
temporal schema and a set of database systems. A temporal schema is structured as one or two (in
case of bitemporal databases) sequences of static schemas (vers1ons) whose behaviour is similar to a
temporal database. Each data from the extension is associated to a static schema in the temporal

schema.

112

XXV Conferencia Latinoamericana de Informdtica Asuncion-Paraguay

. A set of schema structure definitions and a set of constraints complementing them are
called the schema invariants and characterise the schemas which are elements of the universe of
acceptable schemas that may be constructed. This meta-schema is the representation of the
requirements and constraints that all schemas constructed according to a conceptual model should
satisfy. The picture in figure 1 shows the behaviour of a generalised temporal database system.

When a generalised temporal database system is created, there is an initial schema “A”
and a corresponding initial database “al”. During the time that this schema is valid updates are i
made creating the sequence (a2, a3, a4). When a significant change is made to the schema a new |
version is created “B”, and a corresponding database bl is constructed. An adaptation is needed for ‘
the transaction from a4 to bl.

meta-schema, characterized by

the schema invariants
Schema sequence

that constitutes the
dinamic schema

Present sequence
of static databases

Set of valid static Set of valid static Set of valid static
databases for schema A databases for schema B databases for schema C

Figure 1 — Generalised Temporal Database System

2.1 Classification of Schema Versioning

The same considerations on temporal dimensions applied for data (see introduction) can
be applied to schema level. Thus, schema versioning can be classified as snapshot (this is the
conventional case, which will not be examined, since it does not provide support for schema
versioning because it considers only one schema version, valid at any time), as transaction time, as
valid time or as bitemporal database.

e Transaction time Schema Versioning: If transaction time schema versioning is supported, all
the successive versions of the schema are available, each one timestamped with its
corresponding transaction time. Most research consider only this kind of schema versioning, but
it is more limited because the modifications concern only the current schema version and take |
effect in the moment they are defined lasting until a new version is defined, not allowing retro or
proactive changes. In this case the meta-schema is managed as transaction time tables. ‘F

e Valid time Schema Versioning: In this type, each schema version is timestamped with its
corresponding valid time. The new schema version becomes active when its validity is reached.
Retro and proactive changes are allowed. The complication from transaction time is that more
than one schema version may be affected by a single change, because all schema versions totally
or partially overlapped by the valldlty of the change are affected. The meta-schema is managed
as valid time tables, whose rows correspond to schema versions.

o Bltemporal Schema Versioning: In this type, each schema version is timestamped with both
transaction and valid time. The transaction time tells when the modification was proposed and
the valid time tells the period when the schema version is valid. A schema change can only
concern the current and the overlapped bitemporal schema versions.

113

XXV Conferencia Latinoamericana de Informdtica ‘Asuncién-Paraguay

2.2 Modifications on The Schema Definition

The modification operations supported by the temporal generalised database are the
same supported by the relational model, namely:

e Modifications on Attributes o Modifications on attribute-relation assignment
e Expanding the domain Adding an attribute to a relation
e Restricting the domain Suspending a non-key attribute
e Changing the domain Reactivating an attribute

Promoting an attribute

Demoting an attribute

Splitting a relation

Joining two relations

e Modifications on Relations
e C(Creating a relation
e Suspending a relation
e Reactivating a relation

In a multitemporal environment [DeCastro95, 97] schema changes should also include
the change of the table temporal format. So ADD and DROP clauses with VALID or TRANSACTION
specification should be used. For example, consider a bitemporal relation “Student”, the following
statement changes its temporal format to valid time.

ALTER TABLE STUDENT

DROP TRANSACTION

3 MANAGEMENT OF SCHEMA VERSIONING

Dealing properly with schema evolution is a challenging problem, which has been
subject of much research. In the following sections some important issues are identified.

3.1 Strategies of Recording Extensional Data
Two different solutions for the recording of extensional Qata can be used [DeCastro97]:

e single-pool solution: the data corresponding to all schema versions are maintained into a single .
repository according to a global schema (completed schema) which includes all attributes
introduced by the successive schema changes;

e multi-pool solution: distinct data repositories (pools) are maintained for distinct schema
versions. Each data pool is formatted according to its corresponding schema version. When a
new repository is initialised the present information is copied from the old pool accordmg to the
changes on the schema. current ‘

3.2 Interaction between Schema and Data Versioning

When extensional and intensional data are versioned along same temporal dimensions
another distinction can be made: |

e synchronous management: the temporal pertinence of the schema version must include the
temporal pertinence of the corresponding data along the common temporal dimensions, so data
are stored, updated and retrieved through the schema version having the same temporal
pertinence. . ‘

e asynchronous management: the temporal pertinence of a schema version and the temporal
pertinence of the corresponding data are independent, so data can be updated and retrieved
through any schema version. |

So the interaction between intensional and extensional data:
e is always asynchronous along orthogonal dimensions;

e is always synchronous along transaction time and

e can be synchronous or asynchronous along valid time.

114

Asuncion-Paraguay

XXV Conferencia Latinoamericana de Informdtica

3.3 Completed Schema and Null Values
The completed schema [Roddick94] is a schema with relations containing the union of

attributes that have ever been defined for them. When the single-pool solution is used, extensional
data are recorded according to their completed schema.

Example: consider the following history for a Student valid time relation:
— Version 1: [01/01/1996 — 12/31/1996] Student (Register Name, Address, Phone)
— Version 2: [01/01/1997 — 12/31/1997] Student (Register, Name, Phone)
— Version 3: [01/01/1998 - o] Student (Register, Name, Phone, Course)
The completed schema for this relation is: Student (Register,Name,Address,Phone,Course).

When the concept of completed schema is used, the attributes (or relations) undefined at
any schema version should be replaced by null values. Roddick [Roddick94] proposes a 7-valued
null logic. For example, for attributes not currently defined their value depend on the reason behind
their non-existence. The interpretation of these values is given in table 1.

Attribute is defined Attribute is not defined
Value is Value is Value is Value is
_ Known Unknown Known Unknown
Attribute is Applicable value o Wy s
Attribute is Inapplicable | W, . 0
Applicability is Unknown w3 ay
Table 1 - Roddick’s Null Values o
3.4 Schema Valid Time and Schema Transaction Time 1

The support for schema versioning requires the introduction of two new timestamps:
schema valid time (indicating the validity of the schema version in the reality) and schema
transaction time (indicating the temporal pertinence of the schema version in the database system).
These timestamps should be connected to each data to inform to which schema version the data

- belong.

3.5 Design Alternatives

The types of schema and data versioning, the solutions for the storage of extensional H
data and the interaction between schema and data versioning, were analysed with the goal of
identifying all possibilities for the formation of a generalised temporal database system. Based on
this analysis, this paper identified 38 kinds of database systems.

It is important to reinforce the independence between schema and data versioning. The
choice of the types of schema and data versioning depends on the application requirements of
historical recording at intensional and extensional levels. The choice of the storage solution depends
on the storage space, if space is limited then single-pool should be used. The choice of the type of
interaction should consider the level of independence needed. Thus, the definition of the database
system depends on the application’s requirements.

Table 2 shows the alternatives for the construction of a generalised temporal database
system. The first column specifies the kind of schema versioning, the second column lists the kind
of data versioning, the third column tells which solution is used for the storage of extensional data
and in the fourth column there is the interaction between schema and data versioning. There are,
some empty spaces in the fourth column, this happens because the type of interaction can only be
determined if both intensional and extensional data are temporal and known.

115

XXV Conferencia Latinoamericana de Informdtica

Asuncidn-Paraguay

SCHEMA VERSIONING | DATA VERSIONING STORAGE TERACTION
1. Transaction Time Snapshot Single-pool
2. Transaction Time Snapshot Multi-pool . -
3. Transaction Time Transaction Time Single-pool Synchronous
4. Transaction Time Transaction Time Multi-pool Synchronous
5. Transaction Time Valid Time Single-pool Asynchronous
6. Transaction Time Valid Time Multi-pool | Asynchronous
7. Transaction Time Bitemporal Single-pool Synchronous/Asynchronous
8. Transaction Time Bitemporal Multi-pool Synchronous/Asynchronous
9. Transaction Time Multitemporal Single-pool
10. Transaction Time Multitemporal Multi-pool
11. Valid Time Snapshot Single-pool
12. Valid Time Snapshot Multi-pool
13. Valid Time Transaction Time Single-pool Asynchronous
14. Valid Time Transaction Time Multi-pool Asynchronous
15. Valid Time Valid Time Single-pool Synchronous
16. Valid Time Valid Time Single-pool Asynchronous
17. Valid Time Valid Time Multi-pool Synchronous
18. Valid Time Valid Time Multi-pool Asynchronous
19. Valid Time Bitemporal Single-pool Asynchronous/Synchronous
20. Valid Time Bitemporal Single-pool Asynchronous/Asynchronous
21. Valid Time Bitemporal Multi-pool Asynchronous/Synchronous
22. Valid Time Bitemporal Multi-pool Asynchronous/Asynchronous
23. Valid Time Multitemporal Single-pool
24. Valid Time Multitemporal Multi-pool
25. Bitemporal Snapshot Single-pool
26. Bitemporal Snapshot Multi-pool
27. Bitemporal ‘Transaction Time Single-pool Synchronous
28. Bitemporal Transaction Time Multi-pool Synchronous
29. Bitemporal Valid Time Single-pool Synchronous
30. Bitemporal Valid Time Single-pool Asynchronous
31. Bitemporal Valid Time Multi-pool Synchronous
32. Bitemporal Valid Time Multi-pool Asynchronous
33. Bitemporal Bitemporal Single-pool Synchronous/Synchronous
34. Bitemporal Bitemporal Single-pool Synchronous/Asynchronous
35. Bitemporal Bitemporal Multi-pool Synchronous/Synchronous
36. Bitemporal Bitemporal Multi-pool Synchronous/Asynchronous
37. Bitemporal Multitemporal Single-pool
38. Bitemporal Multitemporal Multi-pool

Table 2 - Design Alternatives

4 QUERIES TO THE GENERALISED TEMPORAL DATABASE SYSTEM

With the fact that multiple schema versions coexist in the same database, the facility of
querying these versions is desirable. '

In the last years several temporal query languages have been proposed, but the one that
has achieved most popularity is TSQL2 [Snodgrass95] — because it is a consensual extension of the
SQL2 standard developed by a group composed by academic and specialists. Among the features of
TSQL2 there is the support for transaction time schema versioning (according to Roddick’s
proposal). In [DeCastro95] it is extended to support valid time schema versioning as well.

_ In TSQL2 the specification of the schema version to bie used in the query answer can be
implicit (always the current schema) or explicit, as shown below:

Example 1:, SET SCHEMA DATE 1998-01-01"
SELECT * FROM STUDENT
' WHERE Name = ”"Mary Brown”

116

XXV Conferencia Latinoamericana de Informdtica Asuncién-Paraguay

The schema version is selected by “SET SCHEMA” statement. This query retrieves
data using the schema active on 01/01/1998. Note that this statement only selects the schema
version not affecting data selection.

Examp]e 2: SELECT * FROM STUDENT
WHERE SCHEMA (STUDENT) PRECEEDS DATE '1997-06-01‘

In this case the schema version selector is added to the WHERE clause.

According to the extension propused by De Castro [DeCastro95], TSQL2 also supports
valid time and bitemporal schema versioning, so SET SCHEMA statement should be modified by i
the addition of a VALID and/or a TRANSACTION clause, as shown below: 1

Example 3: SET SCHEMA VALID DATE '1998-01-01°
SELECT * FROM STUDENT
WHERE VALID(STUDENT) OVERLAPS DATE '1997-01-07°

This query retrieves data from table Student, which were valid at 01/01/1997 using the
schema valid at 01/01/1998. There is a conflict between De Castro and Roddick’s proposals about
the processing of this kind of queries. According to De Castro, the constant “01/01/1998” would
only be used to select the schema version if asynchronous management is employed, however,
according to Roddick, extensional data can be restored through any schema version, so the constant
“01/01/1998” would be used for any case. In the approach used by this paper, the constant
“01/01/1998” would be used if single-pool is employed (because data are stored under the
completed schema) or if asynchronous multi-pool is used (because data are updated in all pools
formatted according to the corresponding schema version). When synchronous multi-pool is used it
is not possible to query data through an old schema definition, because data is only updated in the
current data pool. Thus, only in this case, the time constant 01/07/1997 will be used to select both q
data and schema along valid time.

Lets consider the most complex case, in which data and schema are bitemporal:

Example4: SET SCHEMA VALID DATE '1998-01-01°
AND TRANSACTION DATE '1997-01-01°
SELECT * FROM STUDENT _
WHERE VALID(STUDENT) OVERLAPS DATE '1995-01-07°
AND TRANSACTION (STUDENT) OVERLAPS DATE “1996/01/01"

For this case, if synchronous management or single-pool are used, the constant
“01/01/1998” will be used to select the schema version by valid time, the constant “01/01/1997”
will be used to select the schema version by transaction time, the constant “01/07/1995” will be
used to select the data by valid time and the constant “01/01/1996” will select the data by
transaction time. If synchronous multi-pool is employed the temporal selection conditions on
intensional and extensional data would conflict, so the conditions in the WHERE clause should
prevail. Another problem could happen if the selection conditions for the schema do not refer to the
same version, or if the selection conditions for the data do not refer to the same information, in both
cases the query would be rejected.

Example 5: Consider a valid time relation “Student” belonging to a valid time schema, composed
by the following three versions:

— Version 1: [01/01/1996 — 12/31/1996] Student (Register Name, Address, Phone)
— Version 2: [01/01/1997 — 12/31/1997] Student (Register, Name, Phone)
— Version 3: [01/01/1998 -] Student (Register, Name, Phone, Course)

117

XXV Conferencia Latinoamericana de Informdtica

Asuncion-Paraguay

The extensional data are recorded according to the single-pool solution, synchronous
management and can be represented by the following table:

[Register]| Name "Address Phone | Course Valid Time Schema Valid Time
1 John Hill | Flower’s Road 23 |3102225| null 01/01/1996 - o 01/01/1996 — 12/31/1996
2 Mary Brown | King’s Street 99 |3255878| null _|06/15/1996 — 06/01/1998|01/01/1996 — 12/31/1996
3 Paul White null 3252558| null 02/01/1997 - = 01/01/1997 — 12/31/1997
4 Jane Moore null 3789967| Law 07/30/1998 - o 01/01/1998 - «
2 Mary Brown" null 3250000} English 06/02/1998 - e 01/01/1998 - o

Thus, the following query:

SET SCHEMA VALID PERIOD ‘'[1998-01-01 —'1998—10—10] ’
SELECT * FROM STUDENT
WHERE VALID(STUDENT) OVERLAPS DATE ‘1997-07-07'

Can be answered as:

IRegister| Name Phone | Course Valid Time Schema Valid Time
1 John Hill | 3102225 | null 01/01/1996 - 01/01/1996 — 12/31/1996
2 Mary Brown | 3255878 | null | 06/15/1996 - 06/01/1998 | 01/01/1996 — 12/31/1996
3 Paul White | 3252558 | null 02/01/1997 - e 01/01/1997 — 12/31/1997

The query selects the schema valid between 01/01/1998 and 10/10/1998 and data valid
at 1997/07/07. Note that the attribute “Address”, which was defined for the first version; is not
present in the answer because it is not defined for the selected version. The rows “(Jane Moore,
3789967, Law)” and “(Mary Brown, 3250000, English)” are not present in the answer because their
validity dees not overlap the selected interval.

Example 6: Considering the same intensional and extensional data presented for Example 5, the
following query is proposed:

SET SCHEMA VALID PERIOD ‘[1996-01-01 - 1997-12-12]"
SELECT Name, Address, Course FROM STUDENT
WHERE VALID(STUDENT) PRECEEDS DATE 199)8—3 0-12"

In example 5 only one schema version qualifies for the query processing, however for
this case two schema versions are defined within the interval selected by the query. This kind of
queries are called multi-schema and cannot be answered in a simply way. When several versions
qualify for the temporal selection conditions we have two alternatives: reject the query or answer it
using all selected schemas (multi-schema answer).

4.1 The Proposed Strategy
The strategy proposed by this paper includes the following features:

e in order to support legacy applications, queries dealing with the current schema
version should not need changes in the syntax of the DML when dealing with the current schema
version. Thus, if the schema version is not specified, the current version should be used.

e in order to provide more semantics to the query answer, Roddick’s null values (see
table 1) should be used insubstitution of attributes undefined at a given point in time.

* Note that there are two rows for Mary Brown. When the first one was inserted version 1 was valid. In
06/02/1997 her phone has changed, as we are dealing with a temporal database, we could not just replace the row. So
another row-is inserted, formatted according version 3, which was the current schema version.

118

XXV Conferencia Latinoamericana de Informdtica Asuncidn-Paraguay

e all queries should be answered following a predetermined format, shown below:

ATTIRIBUTES TIMESTAMPS SCHEMA VERSION
Transaction Valid Transaction Valid

e sometimes it may be desirable to force that the answer is given by means of the
multi-schema answer, so the clause “using all versions” should be used.

So, using the strategy proposed, considering data presented for Example 5, the query
answer would be:

ATTRIBUTES TIMESTAMPS SCHEMA VERSION
Name Address Course Valid Time SchemaValid Time
John Hill |Flower’s Road 23| s 01/01/1996 - = 01/01/1996 — 12/31/1996
Mary Brown | King’s Street 99 s | 06/15/1996 — 06/01/1998 | 01/01/1996 — 12/31/1996
Paul White s s 02/01/1997 - = 01/01/1997 — 12/31/1997
Jane Moore s Law 07/30/1998 - 01/01/1998 -
Mary Brown Wy English 06/02/1998 - 01/01/1998 - =

The null value ®s was used to inform that the attribute “Course” was not defined under
version 1, its value is unknown and its applicable. The same happened to the attribute “Address” in
version 2, it was nor defined, its value is unknown and it is applicable. The null value s was used
to indicate that the attribute “Address” for Mary Brown was not defined in version 3, its value is
known (the attribute Address was already defined for Mary, in version 1) and it is applicable.

Once the schema versions have been selected they will be used do access the underlying
data. If the solution used for the storage of extensional data is single-pool then the application the
proposed strategy is direct. However if multi-pool is used, a new schema composed by all attributes
needed to answer the query must be constructed. The processing of queries in multi-pool involves I
several data-pools, and requires some filtering. From each data pool should only be recovered the L
extensional data stored under the schema version to which the pool belongs. Multi-schema queries "
may be performed on all 38 types of temporal databases supporting schema versioning.

Example 7: Consider a bitemporal relation “Employee” and a valid time relation “Dept”, belongingv
to a valid time schema, composed by the following three versions:

— Version 1: [01/01/1995 — 12/31/1996]Employee (Name, Salary, Phone, Function)
— Version 2: [01/01/1997 — 12/31/1998]Employee (Name, Salary, Phone) i
— * Version 3: [01/01/1999 — o] Employee (Name, Salary, Dept) f 1
' Dept (Code, Name)
The extensional data are recorded according to the multi-pool solution, asynchronous
management and can be represented by Table 3.

Note that although the rows “(Lisa Fields, 850, 3257888)” and “(Jerry Simon, 1200,
3899988)” were inserted when vqrsion 2 was valid, they were also recorded under version 1 due to
the asynchronous management. The same happened to the rows “(Tom Sands, 960,1)”and “(Bob
Jones, 1700, 2)” that were inserted when version 3 was current and were also recorded under
versions 1 and 2.

Based on the intensional and extensional data presented above, the query:

SET SCHEMA VALID PERIOD [06-01-1996 - 06—01—1999]
SELECT Name, Function, Phone FROM EMPLOYEE
WHERE VALID (EMPLOYEE) PRECEEDS DATE '02-01-1999°

119

XXV Conferencia Latinoamericana de Informdtica

can be answered as:

ATTRIBUTES TIMESTAMPS SCHEMA VERSION
Name Function| Phone | Transaction Time | Valid Time Schema Valid Time
James Lane | Salesman | 3125588 | 01/01/1995 - | 01/01/1996 - o |01/01/1995 — 12/31/1996
Suzy Blair | Manager | 3478999 | 02/25/1996 - = | 03/01/1996 - =0 |01/01/1995 — 12/31/1996
Lisa Fields s 3257888 | 02/01/1997 -~ | 02/01/1997 - = |01/01/1997 — 12/31/1998
Jerry Simon (0 3899988 | 07/30/1998 -~ | 08/01/1998 - « |01/01/1997 — 12/31/1998
Tom Sands s s 01/01/1999 - ~ | 01/01/1999- = - 01/01/1999 —

{
Note that the row “(Bob Jones, 1700, 2)” does not qualify for the temporal selection
clause, so it is not presented in the answer.

Version 1: [01/01/1995 - 12/31/1996]
Employee (Name, Salary, Function)

Asuncién-Paraguay

Version 2: [01/01/1997 - 12/31/1998]
Employee (Name, Salary, Phone)

Name |Salary| Phone | Function | Transaction Time | Valid Time Schema Valid Time
James Lane| 1,000 [3125588| Salesman | 01/01/1995 - [01/01/1996 - | 01/01/1995 — 12/31/1996 |
‘Suzy Blair | 2,050 |3478999| Manager | 02/25/1996 - = [03/01/1996 - | 01/01/1995 — 12/31/1996
Lisa Fields | 850 |3257888| null 02/01/1997 - = |02/01/1997 - «| 01/01/1997 — 12/31/1998
Jerry Simon| 1,200 |3899988| null 07/30/1998 - = |08/01/1998 - o} 01/01/1997 — 12/31/1998
Tom Sands | 960 null null 01/01/1999 - = {01/01/1999- - -01/01/1999 — e

Bob Jones | 1,700 | null null 02/25/1999 - = | 03/01/1999- o 01/01/1999 — =

~ Name

Salary

Phone

Transaction Time

Valid Time

Schema Valid Time |

James Lane

1,000 |3125588

01/01/1995 - e

01/01/1996 - e

01/01/1995 — 12/31/1996

" Suzy Blair

2,050

3478999

02/25/1996 - o

03/01/1996 -

01/01/1995 — 12/31/1996

Lisa Fields

850 3257888

02/01/1997 -

02/01/1997 - e

01/01/1997 — 12/31/1998

Jerry Simon

1,200 |3899988

07/30/1998 - o

08/01/1998 -

01/01/1997 — 12/31/1998

Tom Sands

960 null

01/01/1999 -

01/01/1999- =

01/01/1999 —

Bob Jones

1,700 | null

02/25/1999 -

03/01/1999-

1 01/01/1999 — o

Version 3: [01/01/1999 —]
Employee (Name, Salary, Dept)

Dept (Code, Name)

Code Name - Valid Time
1 Sales 01/01/1997 - =
2 Accountancy 01/01/1997 -
3. Adrhinistration 01/01/1997 - =

Name |Salary| Dept | Transaction Time | Valid Time Schema Valid Time
James Lane| 1,000 | null 01/01/1995 - o= [01/01/1996 - | 01/01/1995 — 12/31/1996
Suzy. Blair | 2,050 | null 02/25/1996 - o= |03/01/1996 - | 01/01/1995 —12/31/1996
Lisa Fields | 850 | null 02/01/1997 - = |02/01/1997 - | 01/01/1997 — 12/31/1998
Jerry Simon| 1,200 | null 07/30/1998 - = |08/01/1998 - | 01/01/1997 —12/31/1998
Tom Sands | 960 1 01/01/1999 - = [01/01/1999- e 01/01/1999 — o
Bob Jones | 1,700 | 2 02/25/1999 - .o [03/01/1999- 01/01/1999 — =

Table 3 — Intensional and extensional data for Employee and Dept

120

XXV Conferencia Latinoamericana de Informdtica Asuncidn-Paraguay

Example 8: Considering the intensional and extensional data presented in Table 3, the query:

SELECT * FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.Dept = DEPT.Code AND (TRANSACTION) EMPLOYEE
OVERLAPS DATE ‘'1997-01-01‘ USING ALL VERSIONS

Can be answered as:

ATTRIBUTES TIMESTAMPS ATTRIBUTES | TiMesTamps| SCHEMA

: VERSION

Name |Salary| Function Tran§actlon Valid Time Code Name Valid Time Sc'henfa
Time Valid Time
James Lane | 1,000 | Salesman |01/01/1995 - o 01/0_12996 s s s 0114(/)31{}19395 6f
Suzy Blair | 2,050 | Manager [02/25/1996 - - 0 0_12996 s os s 0114(/)31{}?999i_
LisaFields| 850 | @ |02/01/1997 - | P2OV1997) 4 S POUD UL
Jerry Simon| 1,200 o 07/30/1998 - oo 08/012998 2 | Accountincy 01/01/1997 - |01/01/1997 —

Example 9: Considering the data presented in Table 3, the following query:
SET SCHEMA VALID ‘1996-01-01'
SELECT EMPLOYEE.NAME, SALARY, DEPT.NAME
FROM EMPLOYEE, DEPT |
WHERE EMPLOYEE.DEPT = DEPT.CODE .
Would be rejected because the relation “Dept” is not defined for the selected schema ;
version.

5 CONCLUSIONS

In order to obtain a complete representation of a relevant part of the real world in a
database system, it is necessary to keep not only all defined data values (past, present and future),
but also all schema versions. Having this in mind we presented the generalised temporal database !
system which achieves this objective by integrating temporal databases concepts and schema JI
versioning mechanisms. The generalised temporal database purpose is to manage schema evolution :
similarly to the management of data evolution already employed in temporal databases. The
‘construction' of a system with these characteristics raises many complex aspects such as the storage
and the recovery of the several schema versions and its associated data.

This paper’s main concern was to study the processing of queries that involve two or
more schema versions and to propose a strategy of answering such queries. Our strategy can be
used by any of the 38 types of temporal database that support schema versioning. It has predefined
fonnaﬁ in order to facilitate its understanding by a compiled application. The strategy proposed is
compliant to TSQL2 principles.

121,

XXV Conferencia Latinoamericana de Informdtica Asuncién-Paraguay

REFERENCES

[Angelakis94] ANGELAKIS, Dimitrios. ERT-SQL/SE; Incorporating Schema Evolution in a Temporal
Query Language. MSc Thesis — University of Manchester — UK, 1994

[Ariav91] ARIAYV, Gad. Temporally Oriented Data Definitions: Managing Schema Evolution in Temporally
Oriented Databases In: Data & Knowledge Engineering v. 6, n. 6,0ct. 1991, p.451-467

[Clifford87] CLIFFORD, J.; CROKER A. The Historical Relational Data Model (HRDM) and Algebra
based on Lifespans. In: 3 IEEE International Conference on Data Engineering, Proceedings... Los
Angeles,CA — 1987. pp. 528-537.

[DeCastro95] De CASTRO, Cristina; GRANDI, Fabio; SCALAS, Mana R., On Schema Versioning in
Temporal Databases. In: Recent Advances in Temporal Databases, CLIFFORD J.; TUZHILIN, A.
(Eds.) Great Britain: Springer, 1995. p.272-291

[DeCastro97] CASTRO, Cristina; . GRANDI, Fabio; SCALAS, Maria R., Schema Versioning For
Multitemporal Relational Databases. Information Systems vol. 22, no. 5, 1997, p.249-290.

[Edelweiss 95] EDELWEISS, N.; CASTILHO, J.M.V.; OLIVEIRA, JPalazzo M.Temporal Aspects of
Conceptual Schema Evolution. In: International Conference Of The Chilean Computer Science Society,
15. Nov. 1-3, 1995, Arica, Chile. Proceedings..., p.187-197.

[Goralwalla97] GORALWALLA, Igbal A.; SZAFRON, Duane; OSZU M. Tamer; Managing Schema
Evolution Using a Temporal Object Model In: 16" International Conference on Conceptual Modeling
(ER’97). Proceedings. .. Nov. 1997.

[Jensen94] JENSEN, C.S. et al. A Consensus Glossary of Temporal Database Concepts. SIGMOD
RECORD, v.23, n.1, p.53-63, Mar.1994.

[Jensen98] JENSEN, C.S. et al. The Consensus Glossary of Temporal Database Concepts - February 1998
Version. Temporal Databases Research and Practice . O. Etzion, S. Jajodia and S. Sripada (eds.)
Springer-Verlag. Berlin Heidelberg 1998. pp. 367-405.

[Laine79] LAINE, H.; MAANAVILJA, O. and PELTOLA, E. “Grammatical Database Model” Information
Systems, v. 4, p. 257-267. 1979

[MaKenzie90] McKENZIE, Edwin & SNODGRASS, Richard. Schema Evolution and the Relational
Algebra. Information Systems v.15, n.2, p.207-232. 1990 ‘

[Martin87] MARTIN, N.G.; NAVATHE, S.B., AHMED, R. Dealing With Temporal Schema Anomalies in
History Databases. In: 13" International Conference on Very Large Databases, Proceedings... Sept 1-4,
1987, Brighton, England, p.177-184

[Peters94] PETERS, R.J. TIGUKAT: A Uniform Behavioural Objectbase Management System. PhD Thesis
University of Alberta, 1994

[Roddick92] RODDICK, John F,, Schema Evolution in Database Systems - An Annotated Bibliography.
ACM SIGMOD Record vol. 21 no. 4, December, 1992.

[Roddick94] RODDICK, J.F., A Model for Temporal Inductive Inference and Schema Evolution in
Relational Database Systems . Ph.D. Thesis, Department of Computer Scnence and Computer
Engineering, La Trobe University, 1994.

[Roddick95] RODDICK, J. F. & SNODGRASS, R. T., Schema Versioning In: The TSQL2 Temporal Query
Language, Kluwer Academic Publishers, Noewell-MA, 1995

[Scala93] SCALAS, Maria Rita, CAPPELLI, Alessandro; CASTRO Cristina De; A Model for Schema
Evolution in Temporal Relational Databases. In: 7th Conference Computers-in Design, Manufacturing
and Production IEEE (COMPEURO'93), Proceedings . ..Paris, Evry, France,1993.

[Snodgrass95] SNODGRASS, R.T., et al., The TSQL2 Temporal Query Language, Kluwer Academic
Publishers, Noewell-MA, 1995.

[Tansel93] 'TANSEL, A.U.; CLIFFORD, J.; GADIA, S; JAIODIA, S.; SEGEV A.; SNODGRASS, R.
Temporal Databases - Theory, Design and Implementation . Redwood City: Benjamin/Cummings,
1993. 633p

[Theodoulidis91] THEODOULIDIS, C., LOUCOPOULUS P. and WANGLER B. A Conceptual' Modelling
Formalism for Temporal Database Applications”, Information Systems, v. 16, n. 4, p. 401-416, 1991.

122

